Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Can J Neurol Sci ; 47(6): 810-815, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32493524

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating rare disease that affects individuals regardless of ethnicity, gender, and age. The first-approved disease-modifying therapy for SMA, nusinursen, was approved by Health Canada, as well as by American and European regulatory agencies following positive clinical trial outcomes. The trials were conducted in a narrow pediatric population defined by age, severity, and genotype. Broad approval of therapy necessitates close follow-up of potential rare adverse events and effectiveness in the larger real-world population. METHODS: The Canadian Neuromuscular Disease Registry (CNDR) undertook an iterative multi-stakeholder process to expand the existing SMA dataset to capture items relevant to patient outcomes in a post-marketing environment. The CNDR SMA expanded registry is a longitudinal, prospective, observational study of patients with SMA in Canada designed to evaluate the safety and effectiveness of novel therapies and provide practical information unattainable in trials. RESULTS: The consensus expanded dataset includes items that address therapy effectiveness and safety and is collected in a multicenter, prospective, observational study, including SMA patients regardless of therapeutic status. The expanded dataset is aligned with global datasets to facilitate collaboration. Additionally, consensus dataset development aimed to standardize appropriate outcome measures across the network and broader Canadian community. Prospective outcome studies, data use, and analyses are independent of the funding partner. CONCLUSION: Prospective outcome data collected will provide results on safety and effectiveness in a post-therapy approval era. These data are essential to inform improvements in care and access to therapy for all SMA patients.


Assuntos
Atrofia Muscular Espinal , Canadá , Criança , Humanos , Atrofia Muscular Espinal/terapia , Estudos Prospectivos , Doenças Raras , Sistema de Registros
3.
Can J Neurol Sci ; 45(6): 652-659, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30430962

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease resulting in muscle weakness, dysarthria and dysphagia, and ultimately respiratory failure leading to death. Half of the ALS patients survive less than 3 years, and 80% of the patients survive less than 5 years. Riluzole is the only approved medication in Canada with randomized controlled clinical trial evidence to slow the progression of ALS, albeit only to a modest degree. The Canadian Neuromuscular Disease Registry (CNDR) collects data on over 140 different neuromuscular diseases including ALS across ten academic institutions and 28 clinics including ten multidisciplinary ALS clinics. METHODS: In this study, CNDR registry data were analyzed to examine potential differences in ALS care among provinces in time to diagnosis, riluzole and feeding tube use. RESULTS: Significant differences were found among provinces, in time to diagnosis from symptom onset, in the use of riluzole and in feeding tube use. CONCLUSIONS: Future investigations should be undertaken to identify factors contributing to such differences, and to propose potential interventions to address the provincial differences reported.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Riluzol/uso terapêutico , Adulto , Idoso , Esclerose Lateral Amiotrófica/reabilitação , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Sistema de Registros
4.
Metallomics ; 8(9): 993-1001, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27337370

RESUMO

The ATP7A protein is a ubiquitous copper-transporting P-type ATPase that is mutated in the lethal pediatric disorder of copper metabolism, Menkes disease. The steady-state location of ATP7A is within the trans-Golgi network (TGN), where it delivers copper to copper-dependent enzymes within the secretory pathway. However, ATP7A constantly cycles between the TGN and the plasma membrane, and in the presence of high copper concentrations, the exocytic arm of this cycling pathway is enhanced to promote a steady-state distribution of ATP7A to post-Golgi vesicles and the plasma membrane. A single di-leucine endocytic motif within the cytosolic carboxy tail of ATP7A (1487LL) was previously shown to be essential for TGN localization by functioning in retrieval from the plasma membrane, however, the requirement of other di-leucine signals in this region has not been fully investigated. While there has been some success in identifying sequence elements within ATP7A required for trafficking and catalysis, progress has been hampered by the instability of the ATP7A cDNA in high-copy plasmids during replication in Escherichia coli. In this study, we find that the use of DNA synthesis to generate silent mutations across the majority of both mouse and human ATP7A open reading frames was sufficient to stabilize these genes in high-copy plasmids, thus permitting the generation of full-length expression constructs. Using the stabilized mouse Atp7a construct, we identify a second di-leucine motif in the carboxy tail of ATP7A (1459LL) as essential for steady-state localization in the TGN by functioning in endosome-to-TGN trafficking. Taken together, these findings demonstrate that multiple di-leucine signals are required for recycling ATP7A from the plasma membrane to the TGN and illustrate the utility of large-scale codon reassignment as a simple and effective approach to circumvent cDNA instability in high-copy plasmids.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Endocitose/fisiologia , Leucina/metabolismo , Rede trans-Golgi/metabolismo , Animais , Membrana Celular , ATPases Transportadoras de Cobre/genética , Células HEK293 , Humanos , Leucina/química , Leucina/genética , Camundongos , Mutação , Transporte Proteico
5.
Dis Model Mech ; 9(1): 25-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26747866

RESUMO

The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Cobre/toxicidade , Modelos Animais de Doenças , Degeneração Hepatolenticular/genética , Síndrome dos Cabelos Torcidos/genética , Sequência de Aminoácidos , Animais , ATPases Transportadoras de Cobre , Cães , Retículo Endoplasmático/metabolismo , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
6.
Am J Physiol Cell Physiol ; 309(10): C660-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26269458

RESUMO

Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Síndrome dos Cabelos Torcidos/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre , Feminino , Regulação da Expressão Gênica/fisiologia , Integrases , Masculino , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/patologia , Camundongos , Camundongos Knockout , Mutação
7.
J Pathol ; 236(2): 241-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25639447

RESUMO

ATP7A is a copper-transporting P-type ATPase that is essential for cellular copper homeostasis. Loss-of-function mutations in the ATP7A gene result in Menkes disease, a fatal neurodegenerative disorder resulting in seizures, hypotonia and failure to thrive, due to systemic copper deficiency. Most recently, rare missense mutations in ATP7A that do not impact systemic copper homeostasis have been shown to cause X-linked spinal muscular atrophy type 3 (SMAX3), a distal hereditary motor neuropathy. An understanding of the mechanistic and pathophysiological basis of SMAX3 is currently lacking, in part because the disease-causing mutations have been shown to confer both loss- and gain-of-function properties to ATP7A, and because there is currently no animal model of the disease. In this study, the Atp7a gene was specifically deleted in the motor neurons of mice, resulting in a degenerative phenotype consistent with the clinical features in affected patients with SMAX3, including the progressive deterioration of gait, age-dependent muscle atrophy, denervation of neuromuscular junctions and a loss of motor neuron cell bodies. Taken together, these data reveal autonomous requirements for ATP7A that reveal essential roles for copper in the maintenance and function of the motor neuron, and suggest that SMAX3 is caused by a loss of ATP7A function that specifically impacts the spinal motor neuron.


Assuntos
Adenosina Trifosfatases/deficiência , Proteínas de Transporte de Cátions/deficiência , Doenças Genéticas Ligadas ao Cromossomo X/genética , Atrofia Muscular Espinal/genética , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Coxeadura Animal/genética , Coxeadura Animal/fisiopatologia , Camundongos Endogâmicos C57BL , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Mutação de Sentido Incorreto/genética , Medula Espinal/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...